Optimal Generation of Cam Curves with B-Spline.
نویسندگان
چکیده
منابع مشابه
Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملoptimal trajectory generation for a robotic worm via parameterization by b-spline curves
in this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using b-spline curves. the trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. due to gait design considerations it is desired to minimize the required torques in a cycle of gait. similar to caterpillars,...
متن کاملNUAT B-spline curves
This paper presents a new kind of splines, called non-uniform algebraic-trigonometric B-splines (NUAT B-splines), generated over the space spanned by {1, t, . . . , tk−3, cos t, sin t} in which k is an arbitrary integer larger than or equal to 3. We show that the NUAT B-splines share most properties of the usual polynomial B-splines. The subdivision formulae of this new kind of curves are given...
متن کاملA direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting
B-spline functions are widely used in many industrial applications such as computer graphic representations, computer aided design, computer aided manufacturing, computer numerical control, etc. Recently, there exist some demands, e.g. in reverse engineering (RE) area, to employ B-spline curves for non-trivial cases that include curves with discontinuous points, cusps or turning points from the...
متن کاملB-Spline Curves
However, we cannot easily control the curve locally. That is, any change to an individual control point will cause changes in the curve along its full length. In addition, we cannot create a local cusp in the curve, that is, we cannot create a sharp corner unless we create it at the beginning or end of a curve where it joins another curve. Finally, it is not possible to keep the degree of the B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C
سال: 2002
ISSN: 0387-5024,1884-8354
DOI: 10.1299/kikaic.68.708